3.29.26 \(\int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx\) [2826]

3.29.26.1 Optimal result
3.29.26.2 Mathematica [C] (verified)
3.29.26.3 Rubi [A] (verified)
3.29.26.4 Maple [A] (verified)
3.29.26.5 Fricas [C] (verification not implemented)
3.29.26.6 Sympy [F]
3.29.26.7 Maxima [F]
3.29.26.8 Giac [F]
3.29.26.9 Mupad [F(-1)]

3.29.26.1 Optimal result

Integrand size = 28, antiderivative size = 98 \[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\frac {2 \sqrt {1-2 x} \sqrt {3+5 x}}{21 \sqrt {2+3 x}}-\frac {37}{21} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )+\frac {2}{21} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right ) \]

output
-37/63*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+2/63 
*EllipticF(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)+2/21*(1-2* 
x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2)
 
3.29.26.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.71 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.90 \[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\frac {1}{63} \left (\frac {6 \sqrt {1-2 x} \sqrt {3+5 x}}{\sqrt {2+3 x}}+37 i \sqrt {33} E\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right )|-\frac {2}{33}\right )-35 i \sqrt {33} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {9+15 x}\right ),-\frac {2}{33}\right )\right ) \]

input
Integrate[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)),x]
 
output
((6*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/Sqrt[2 + 3*x] + (37*I)*Sqrt[33]*EllipticE 
[I*ArcSinh[Sqrt[9 + 15*x]], -2/33] - (35*I)*Sqrt[33]*EllipticF[I*ArcSinh[S 
qrt[9 + 15*x]], -2/33])/63
 
3.29.26.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {109, 27, 176, 123, 129}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(5 x+3)^{3/2}}{\sqrt {1-2 x} (3 x+2)^{3/2}} \, dx\)

\(\Big \downarrow \) 109

\(\displaystyle \frac {2 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}-\frac {2}{21} \int -\frac {5 (37 x+20)}{2 \sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5}{21} \int \frac {37 x+20}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx+\frac {2 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\)

\(\Big \downarrow \) 176

\(\displaystyle \frac {5}{21} \left (\frac {37}{5} \int \frac {\sqrt {5 x+3}}{\sqrt {1-2 x} \sqrt {3 x+2}}dx-\frac {11}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx\right )+\frac {2 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\)

\(\Big \downarrow \) 123

\(\displaystyle \frac {5}{21} \left (-\frac {11}{5} \int \frac {1}{\sqrt {1-2 x} \sqrt {3 x+2} \sqrt {5 x+3}}dx-\frac {37}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {2 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\)

\(\Big \downarrow \) 129

\(\displaystyle \frac {5}{21} \left (\frac {2}{5} \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )-\frac {37}{5} \sqrt {\frac {11}{3}} E\left (\arcsin \left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )\right )+\frac {2 \sqrt {1-2 x} \sqrt {5 x+3}}{21 \sqrt {3 x+2}}\)

input
Int[(3 + 5*x)^(3/2)/(Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)),x]
 
output
(2*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(21*Sqrt[2 + 3*x]) + (5*((-37*Sqrt[11/3]*E 
llipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5 + (2*Sqrt[11/3]*Ellipt 
icF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/5))/21
 

3.29.26.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 109
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(b*c - a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f 
*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m + 1)) 
 Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) 
+ c*f*(p + 1)) + b*c*(d*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) 
 + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[{a, b, c, 
d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || 
IntegersQ[m, n + p] || IntegersQ[p, m + n])
 

rule 123
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_ 
)]), x_] :> Simp[(2/b)*Rt[-(b*e - a*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x] 
/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ[{a, 
b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !L 
tQ[-(b*c - a*d)/d, 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d 
), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)/b, 0])
 

rule 129
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x 
_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[ 
Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b*e - 
a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ 
[(b*e - a*f)/b, 0] && PosQ[-b/d] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d 
*e - c*f)/d, 0] && GtQ[-d/b, 0]) &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(( 
-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ 
[((-d)*e + c*f)/f, 0] && GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f 
/b]))
 

rule 176
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]* 
Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[h/f   Int[Sqrt[e + f*x]/(Sqrt[a + b*x 
]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f   Int[1/(Sqrt[a + b*x]*Sqrt[c 
 + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && Sim 
plerQ[a + b*x, e + f*x] && SimplerQ[c + d*x, e + f*x]
 
3.29.26.4 Maple [A] (verified)

Time = 1.32 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.38

method result size
default \(-\frac {\sqrt {3+5 x}\, \sqrt {2+3 x}\, \sqrt {1-2 x}\, \left (33 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-37 \sqrt {5}\, \sqrt {2+3 x}\, \sqrt {7}\, \sqrt {1-2 x}\, \sqrt {-3-5 x}\, E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )-60 x^{2}-6 x +18\right )}{63 \left (30 x^{3}+23 x^{2}-7 x -6\right )}\) \(135\)
elliptic \(\frac {\sqrt {-\left (-1+2 x \right ) \left (3+5 x \right ) \left (2+3 x \right )}\, \left (\frac {-\frac {20}{21} x^{2}-\frac {2}{21} x +\frac {2}{7}}{\sqrt {\left (\frac {2}{3}+x \right ) \left (-30 x^{2}-3 x +9\right )}}+\frac {40 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{441 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}+\frac {74 \sqrt {10+15 x}\, \sqrt {21-42 x}\, \sqrt {-15 x -9}\, \left (-\frac {7 E\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{6}+\frac {F\left (\sqrt {10+15 x}, \frac {\sqrt {70}}{35}\right )}{2}\right )}{441 \sqrt {-30 x^{3}-23 x^{2}+7 x +6}}\right )}{\sqrt {1-2 x}\, \sqrt {2+3 x}\, \sqrt {3+5 x}}\) \(195\)

input
int((3+5*x)^(3/2)/(2+3*x)^(3/2)/(1-2*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
-1/63*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*(33*5^(1/2)*(2+3*x)^(1/2)* 
7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*EllipticF((10+15*x)^(1/2),1/35*70^(1/ 
2))-37*5^(1/2)*(2+3*x)^(1/2)*7^(1/2)*(1-2*x)^(1/2)*(-3-5*x)^(1/2)*Elliptic 
E((10+15*x)^(1/2),1/35*70^(1/2))-60*x^2-6*x+18)/(30*x^3+23*x^2-7*x-6)
 
3.29.26.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.07 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.69 \[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=-\frac {949 \, \sqrt {-30} {\left (3 \, x + 2\right )} {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right ) - 3330 \, \sqrt {-30} {\left (3 \, x + 2\right )} {\rm weierstrassZeta}\left (\frac {1159}{675}, \frac {38998}{91125}, {\rm weierstrassPInverse}\left (\frac {1159}{675}, \frac {38998}{91125}, x + \frac {23}{90}\right )\right ) - 540 \, \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{5670 \, {\left (3 \, x + 2\right )}} \]

input
integrate((3+5*x)^(3/2)/(2+3*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="fricas")
 
output
-1/5670*(949*sqrt(-30)*(3*x + 2)*weierstrassPInverse(1159/675, 38998/91125 
, x + 23/90) - 3330*sqrt(-30)*(3*x + 2)*weierstrassZeta(1159/675, 38998/91 
125, weierstrassPInverse(1159/675, 38998/91125, x + 23/90)) - 540*sqrt(5*x 
 + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1))/(3*x + 2)
 
3.29.26.6 Sympy [F]

\[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\int \frac {\left (5 x + 3\right )^{\frac {3}{2}}}{\sqrt {1 - 2 x} \left (3 x + 2\right )^{\frac {3}{2}}}\, dx \]

input
integrate((3+5*x)**(3/2)/(2+3*x)**(3/2)/(1-2*x)**(1/2),x)
 
output
Integral((5*x + 3)**(3/2)/(sqrt(1 - 2*x)*(3*x + 2)**(3/2)), x)
 
3.29.26.7 Maxima [F]

\[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((3+5*x)^(3/2)/(2+3*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="maxima")
 
output
integrate((5*x + 3)^(3/2)/((3*x + 2)^(3/2)*sqrt(-2*x + 1)), x)
 
3.29.26.8 Giac [F]

\[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\int { \frac {{\left (5 \, x + 3\right )}^{\frac {3}{2}}}{{\left (3 \, x + 2\right )}^{\frac {3}{2}} \sqrt {-2 \, x + 1}} \,d x } \]

input
integrate((3+5*x)^(3/2)/(2+3*x)^(3/2)/(1-2*x)^(1/2),x, algorithm="giac")
 
output
integrate((5*x + 3)^(3/2)/((3*x + 2)^(3/2)*sqrt(-2*x + 1)), x)
 
3.29.26.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx=\int \frac {{\left (5\,x+3\right )}^{3/2}}{\sqrt {1-2\,x}\,{\left (3\,x+2\right )}^{3/2}} \,d x \]

input
int((5*x + 3)^(3/2)/((1 - 2*x)^(1/2)*(3*x + 2)^(3/2)),x)
 
output
int((5*x + 3)^(3/2)/((1 - 2*x)^(1/2)*(3*x + 2)^(3/2)), x)